Exercise 28

(a) If $f(x)=e^{x} \cos x$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Check to see that your answers to part (a) are reasonable by graphing f, f^{\prime}, and $f^{\prime \prime}$.

Solution

Calculate the first derivative of the given function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(e^{x} \cos x\right) \\
& =\left[\frac{d}{d x}\left(e^{x}\right)\right] \cos x+e^{x}\left[\frac{d}{d x}(\cos x)\right] \\
& =\left(e^{x}\right) \cos x+e^{x}(-\sin x) \\
& =e^{x}(\cos x-\sin x)
\end{aligned}
$$

Now calculate the second derivative.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[f^{\prime}(x)\right] \\
& =\frac{d}{d x}\left[e^{x}(\cos x-\sin x)\right] \\
& =\left[\frac{d}{d x}\left(e^{x}\right)\right](\cos x-\sin x)+e^{x}\left[\frac{d}{d x}(\cos x-\sin x)\right] \\
& =\left(e^{x}\right)(\cos x-\sin x)+e^{x}(-\sin x-\cos x) \\
& =-2 e^{x} \sin x
\end{aligned}
$$

The function and its first two derivatives are plotted below versus x.

