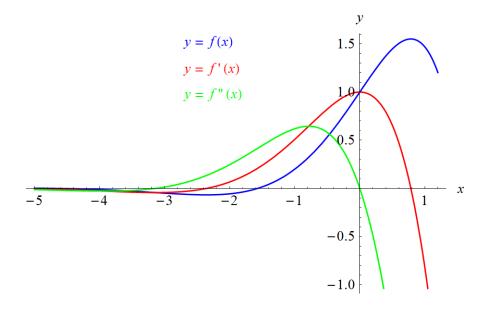
Exercise 28

- (a) If $f(x) = e^x \cos x$, find f'(x) and f''(x).
- (b) Check to see that your answers to part (a) are reasonable by graphing f, f', and f''.

Solution


Calculate the first derivative of the given function.

$$f'(x) = \frac{d}{dx}(e^x \cos x)$$
$$= \left[\frac{d}{dx}(e^x)\right] \cos x + e^x \left[\frac{d}{dx}(\cos x)\right]$$
$$= (e^x) \cos x + e^x(-\sin x)$$
$$= e^x(\cos x - \sin x)$$

Now calculate the second derivative.

$$f''(x) = \frac{d}{dx} [f'(x)]$$

= $\frac{d}{dx} [e^x (\cos x - \sin x)]$
= $\left[\frac{d}{dx} (e^x)\right] (\cos x - \sin x) + e^x \left[\frac{d}{dx} (\cos x - \sin x)\right]$
= $(e^x) (\cos x - \sin x) + e^x (-\sin x - \cos x)$
= $-2e^x \sin x$

The function and its first two derivatives are plotted below versus x.

